Python vs Modula-2

(3) Probability that two persons sit next each other in the pilates studio

Back to Workbench Python

<Task>

I am a member of the Pilates Studio which accommodates m participants. Among them there is a person X, and I want to be seated next to X. If the participants are positioned randomly, what is the probability that I and X come next to each other? Two approaches are possible: (1) to enumerate success events and (2) to use the Monte Carlo method. Here the latter is taken. (The former gives Prob=0.173)

To solve this problem, all positions are first assigned numbers i = 1 to m.

 
My position i and X's position j are determined from random numbers in each trial. If i happens to equal j, j is set to m. If the squared distance d2 between i and j is less than 2, the trial is success. Calculate the ratio of the number of successes to that of trials. The movie below illustrates how two positions are taken; 3 successes out of 20 trials.

The map of seats is given in pstudio1 and pstudio2 (in Japanese).

<Output of MonteCarloDetail>

<Outout of PilatesStudioFast>

<Source Code>
<Python (Object Oriented Programming)>

[Main] rndPilates.py

import matplotlib.pyplot as plt
import subpilates as subp
import time

w = subp.setVoid()

ww = subp.vScan(0,10,0,6,w.voidx,w.voidy,w.Nvoid)

www = subp.vNeighbor(ww.vposnx, ww.vposny, ww.Nvposn)

wwww = subp.MonteCarlo(10000,100,www.pos2D,www.Neibor,www.Nvp)

ax = plt.axes()
ax.set_ylim(0.0, 0.2)
plt.plot(wwww.x, wwww.y)
plt.show()

w5 = subp.MonteCarloDetail(0,10,0,6,Nanim,ww.vposnx, ww.vposny,
                           www.pos2D,www.Neibor,www.Nvp)
[Module] subpilates.py
import numpy as np
import random as ra
import numpy.random as rnd
import matplotlib.pyplot as plt
import time

separation = 4
tanimn  = 1

class setVoid:
    def __init__(self):
        voidx = np.array([5, 0, 10])
        voidy = np.array([0, 3, 3])
        num = len(voidx)
        self.voidx = voidx
        self.voidy = voidy
        self.Nvoid = num
        
    def info(self):
        print("'setVoid' gives")
        print(self.voidx)
        print(self.voidy)
        print(self.Nvoid," items of void")

class vScan:
    def __init__(self,ix0,ix1,iy0,iy1,voidx,voidy,Nvoid):

        def isColln(ix,iy):
            q = False
            for i in range(Nvoid):
                if (voidx[i] == ix) and (voidy[i] == iy):
                    print('Bumping on (',ix,',',iy,')')
                    q = True
                    break
            return q
    
        vposnx=[]
        vposny=[]
          
        m = 0
        for iy in range(iy0,iy1+1):
            for ix in range(ix0,ix1+1):
                if (ix + iy) % 2 == 1:
                    if not isColln(ix,iy):
                        vposnx.append(ix) 
                        vposny.append(iy)
                        m += 1
                    
        self.vposnx = vposnx
        self.vposny = vposny             
        self.Nvposn = m
    
class vNeighbor:
    def __init__(self,vpx,vpy,Nvp):
        
        def isNear(xm,xmm,ym,ymm):
            d = (xm - xmm)**2 + (ym - ymm)**2
            return d <= separation
     
        Ns = 0
        pos2D = np.ndarray(shape=(Nvp,8), dtype=int)
        Neibor = []
        for m in range(Nvp):
            k = 0
            s = []
            for mm in range(Nvp):
                if (m!=mm)and isNear(vpx[m],vpx[mm],vpy[m],vpy[mm]):
                    s.append(mm+1)
                    k += 1
            Neibor.append(k) 
            Ns += k
            for kk in range(k):
                pos2D[m,kk] = s[kk]
                 
        self.Neibor = Neibor
        self.pos2D = pos2D
        self.Ns = Ns
        self.Nvp = Nvp
        self.prob = float(self.Ns)/float(Nvp*(Nvp-1))
        
    def result(self):
        print('Probability is calculated as ',f'{self.prob:,.4f}')
 
def isNeighbor(ip,jp,Neibor,pos2D):
    p = False  
    for m in range(Neibor[ip]):
        if (jp+1) == pos2D[ip,m]:
            p = True
            break
    return p

class MonteCarlo:
    
    def __init__(self,Nloop,Nstep,pos2D,Neibor,Nvp):
        Nhit = 0
        x = []
        y = []
        Nsize = 0
        for loop in range(Nloop):
            m1 = int(Nvp*ra.random())
            m2 = int((Nvp-1)*ra.random())
            if m1 == m2:
                m2 = Nvp - 1
                
            if isNeighbor(m1,m2,Neibor,pos2D):
                Nhit += 1
                
            if (loop+1) % Nstep == 0:
                y.append(float(Nhit)/float(loop+1)) 
                x.append(loop+1)
                print(loop+1 ,': ', y[Nsize])
                Nsize += 1
        self.x = x
        self.y = y
        self.Nloop = Nloop
        self.Nsize = Nsize
        
class MonteCarloDetail:
・・・・・・・・
               
<Modula-2 (Structured Programming)>

[MAIN] MODULE randPilates.MOD

MODULE randPilates;
FROM SubPilates IMPORT PilatesStudioFast, array2D, ・・・;
VAR
  Npostn : ARRAY [0.._positn-1] OF INTEGER;
  xypostn: ARRAY [0.._positn-1] OF INTEGER;
  postn  : array2D;
  Nvoid  : INTEGER;
  Nvposn : INTEGER;
  void   : ARRAY [0..10] OF vect;
  vposn  : ARRAY [0.._positn-1] OF vect;

  ・・・;
BEGIN
  vScan(vposn, Nvposn, void, Nvoid, ix0,ix1, iy0,iy1);
  vNeighbor(vposn, Nvposn, Nvneighbor, pos2D);
 
  PilatesStudioFast(Nloop,Nvposn,x,y,n,Npostn,postn);
  ・・・;  
END randPilates.

[MODULE] SubPilates

DEFINITION MODULE SubPilates;
CONST
  _trials = 1000;
  _positn = 42;    (* array size *)
  _site   = 8;     (* max number of neighbors *)

TYPE
  array2D 
  = ARRAY [0.._positn - 1] OF ARRAY [0.._site - 1] OF INTEGER;
  vect    = RECORD ix, iy: INTEGER; END;
IMPLEMENTATION MODULE SubPilates;

PROCEDURE vScan(VAR vposn: ARRAY OF vect;
               VAR Nvposn: INTEGER;
                 VAR void: ARRAY OF vect;
                    Nvoid: INTEGER;
                  ix0,ix1: INTEGER;
                  iy0,iy1: INTEGER);
  VAR
    i,j,m: INTEGER;
    p: vect;
  BEGIN
    m:= 0;
    FOR j:=iy0 TO iy1 DO
      FOR i:= ix0 TO ix1 DO
        IF (i + j) MOD 2 = 1 THEN
          WITH p DO
            ix:= i; iy:= j;
            IF NOT isCollision(p, void, Nvoid) THEN
	          vposn[m]:= p;
	          INC(m);
	        END;
	      END;
        END;
      END;
    END;
    Nvposn:= m;
  END vScan;

PROCEDURE vNeighbor(VAR vposn: ARRAY OF vect;
                       Nvposn: INTEGER;
                VAR Nneighbor: ARRAY OF INTEGER;
                    VAR pos2D: array2D);
  VAR
    k,kk,m,mm,ns: INTEGER;
    s: ARRAY [0..9] OF INTEGER;
  BEGIN
    ns:= 0;
    FOR m:= 0 TO Nvposn-1 DO
      k:= 0;
      FOR mm:= 0 TO Nvposn-1 DO
        IF (m<>mm) AND isNear(vposn[m], vposn[mm]) THEN
          s[k]:= mm+1;
          INC(k);
        END;
      END;
      Nneighbor[m]:= k;
      INC(ns,k);
      FOR kk:=0 TO k-1 DO
        pos2D[m,kk]:= s[kk];
      END;	
    END;
  END vNeighbor;

PROCEDURE isNeighbor(ipos, jpos: INTEGER;
                     VAR Npostn: ARRAY OF INTEGER;
                      VAR postn: array2D): BOOLEAN;
  VAR
    p: BOOLEAN;
    m: INTEGER;
  BEGIN
    p:= FALSE;
    m:= 0;
    LOOP
      IF jpos+1 = postn[ipos,m] THEN
        p:= TRUE;
	EXIT;
      END;
      INC(m);
      IF m = Npostn[ipos] THEN EXIT END;
    END;
    RETURN p;
  END isNeighbor;

PROCEDURE PilatesStudioFast(Nloop: INTEGER;
                                N: INTEGER;
                         VAR x, y: ARRAY OF REAL;
                            VAR n: INTEGER;
                       VAR Npostn: ARRAY OF INTEGER;
                        VAR postn: array2D);
  VAR
    ipos,jpos: INTEGER;
    loop     : INTEGER;
    Neighbor : INTEGER;

  BEGIN
    Neighbor:= 0; n:= 0;
    FOR loop:= 1 TO Nloop DO
      ipos:= INT(FLOAT(N)*Lib.RAND());
      jpos:= INT(FLOAT(N - 1)*Lib.RAND());
      IF ipos=jpos THEN jpos:= N - 1; END; 
      IF isNeighbor(ipos, jpos, Npostn, postn) THEN
	    INC(Neighbor);
      END;
      y[n]:= FLOAT(Neighbor)/FLOAT(loop);
      x[n]:= FLOAT(loop);
      INC(n);
    END;
  END PilatesStudioFast;
  
PROCEDURE PilatesStudio(Nloop: INTEGER;
                 VAR Neighbor: INTEGER;
                       npostn: INTEGER;
                   VAR Npostn: ARRAY OF INTEGER;
                  VAR xypostn: ARRAY OF INTEGER;
                    VAR postn: array2D);
  
・・・・・・
END SubPilates.

9-21, 5-1-2023, S. Hayashi